33. $\frac{6}{7}$	50. 24	67.16
34. 1	52. 2	60 0
35. $\frac{1}{4}$	$52. \frac{1}{5}$	09. 9
36. $3\frac{1}{2}$	53. 6	$70. \frac{1}{15}$
2	54. $15\frac{1}{6}$	71. 1,400,000
$57.\frac{1}{3}$	55. $\frac{3}{2}$	72. 18; yes
38. $-\frac{1}{15}$	8 56 9	73. \$16.10
39. $\frac{7}{2}$	$50. \frac{1}{8}$	74. \$12.65
⁸ 40 ¹⁵	57. 6	75. $6\frac{1}{4}$
$40. \frac{1}{4}$	58. $\frac{8}{3}$	76. \$28.75
41. $8\frac{5}{8}$	59. $\frac{1}{6}$	77. $\frac{2}{3}$
42. 3	60. $\frac{4}{25}$	78. $\frac{2}{5}$
43. $3\frac{3}{6}$	61. $\frac{1}{8}$	79. $\frac{11}{35}$
44. $\frac{1}{4}$	$62 \frac{12}{12}$	80. 5
45. $\frac{1}{3}$	31	81 O
46. 4	63. $\frac{11}{6}$, $\frac{15}{8}$	81. Q 82 T
47. $\frac{9}{47}$	64. $\frac{5}{6}$, $\frac{7}{8}$, $\frac{11}{12}$	83 \$
$48, \frac{9}{9}$	65. $\frac{7}{12}$, $\frac{2}{3}$, $\frac{25}{36}$, $\frac{5}{6}$	00.0
4	66. 4	
49. $0\frac{1}{4}$ or $\frac{25}{4}$		

7

TOPIC 3: DECIMALS

A. Meaning of Places:

Each digit position has a value ten times the place to its right. The part to the left of the point is the whole number part.

example: 324.519 = $(3 \times 100) + (2 \times 10) + (4 \times 1)$ + $(5 \times \frac{1}{10}) + (1 \times \frac{1}{100}) + (9 \times \frac{1}{1000})$

Problems 1-5: Which is larger?

159 or .7	4. 1.9 or 1.09
202 or .03	55 or .49
3 2 or 03	

Problems 6-8: Arrange in order of size from smallest to largest:

6. .02, .2, .19, .00858. 4.5, 5.4, 4.49, 5.417. .45, .449, .451, .5

<u>Repeating decimals</u> are shown with a bar over the repeating block of digits: *example:* $.\overline{3}$ means .333333333... *example:* $.\overline{43}$ means .4343434343... *example:* .4 $\overline{3}$ means .433333333...

Problems 9-10: Arrange in order, large to small:

9. .3, .3, .34 10. .6, .67, .67, .67, .67

B. Fraction-decimal conversion:

Fraction to decimal: divide the top by the bottom: example: $\frac{3}{4} = 3 \div 4 = 0.75$ example: $\frac{20}{3} = 20 \div 3 = 6.\overline{6}$ example: $3\frac{2}{5} = 3 + \frac{2}{5} = 3 + (2 \div 5)$ = 3 + .4 = 3.4

Problems 11-14: Write each as a decimal. If the decimal repeats, show the repeating block:

11.	$\frac{5}{8} =$	13.	$4\frac{1}{3} =$
12.	$\frac{3}{7} =$	14.	$\frac{3}{100} =$

Non-repeating decimals to fractions: say the number as a fraction, write the fraction you say; reduce if possible:

example: $.4 = \text{four tenths} = \frac{4}{10} = \frac{2}{5}$

example: 3.76 = three and seventy six hundredths = $3\frac{76}{2} = 3\frac{19}{2}$

nundredths =
$$5\frac{1}{100} = 5\frac{1}{2}$$

Problems 15-18: Write as a fraction:

15.	.01 =	17.	4.9 =
16.	.38 =	18.	1.25 =

Comparison of fractions and decimals: usually it is easiest to convert fractions to decimals, then compare:

example: Arrange from small to large: .3, $\frac{2}{5}$, $.\overline{3}$, $\frac{2}{7}$

As decimals these are: .3, .4, .33333..., $.\overline{285714}$... So the order is: $.\overline{285714}$, .3. $.\overline{3}$, .4, or $\frac{2}{7}$, .3, $.\overline{3}$, $\frac{2}{5}$

Problems 19-21: Arrange in order, small to large: 19. $\frac{2}{3}$, .6, .67, . $\overline{67}$ | 21. $\frac{1}{100}$, .01, .00 $\overline{9}$, $\frac{5}{500}$ 20. $\frac{7}{8}$, 0.87, $\frac{13}{16}$, 0.88

Adding and subtracting decimals: like places must be combined (line up the points): *example:* 4 + .3 = 4.3 *example:* 3.43 + .791 + 12: $\begin{array}{r} .791 \\ \underline{12.000} \\ 16.221 \end{array}$ *example:* 8 - 4.96: $\underline{-4.96} \\ \underline{3.04} \\ example: 6.04 - (2 - 1.4) = 6.04 - .6 = 5.44 \end{array}$

Problems 22-30: Calculate:

22. 5.4 + .78 =23. 1.36 - 0.63 =24. 4 - .3 + .001 - .01 + .1 =25. \$3.54 - \$1.68 =26. \$17 - \$10.50 =27. 17.5 - 10 =28. 4 + .3 + .02 + .001 =29. 8.3 - 0.92 =30. 4.7 + 47 + 0.47 =

C. <u>Multiplying and dividing decimals</u>:

Multiplying decimals		
example: $.3 \times .5 = .15$		
example: $.3 \times .2 = .06$		
<i>example:</i> $(.03)^2 = .0009$		
31. 3.24 × 10 =	34. $5 \times 0.4 =$	
3201×.2 =	35. $(.51)^2 =$	
33. $(.04)^2 =$		

Dividing decimals: Change the problem to an
equivalent whole number problem by multiplying
both numbers by the same power of 10:example: $.3 \div .03$
Multiply both by 100 to get $30 \div 3 = 10$
example: $\frac{.014}{.07}$
Multiply both by 1000 to get $14 \div 70 = .2$ 36. $.013 \div 100 =$ $40. \frac{7.20}{2.4} =$
 $41. 1.44 \div 2.4 =$
 $38. <math>\frac{.340}{...4} =$
 $39. <math>\frac{...84}{...07} =$

D. Percent:

Meaning: translate percent as hundredths: example: 8% means 8 hundredths or .08 or $\frac{8}{100} = \frac{2}{25}$ <u>Percent-decimal conversion</u>: To change a decimal to percent form, multiply by 100 (move the point 2 places right), write the percent symbol (%): example: .075 = 7.5%

example: $1\frac{1}{4} = 1.25 = 125\%$

Problems 43-45: Write as a percent:

13.	.3 =	44.	4 =

45. .085 =

To change a percent to decimal form, move the point 2 places left (divide by 100) and drop the % symbol: example: 8.76% = .0876example: 67% = .67

Problems 46-49: Write as a decimal:

46.	10% =	48.	.03% =
47.	136% =	49.	4% =

Solving percent problems:

Step 1: Without changing the meaning, write the problems so it says "___ of ___ is ___", and from this, identify *a*, *b*, and *c*:

a % of b is c

Problems 50-52: Write in the form a% of b is c, and tell the values of a, b, and c:

- 50. 3% of 40 is 1.2
- 51. 600 is 150% of 400

52. 3 out of 12 is 25%

Step 2: Given a and b, change a% to a decimal and multiply ("of" can be translated "multiply"). Or, given c and one of the others, divide c by the other (first change percent to decimal); if answer is a, write it as a percent:

<i>example:</i> What is 9.4% of \$5000?
Compare <i>a</i> % of <i>b</i> is <i>c</i> : 9.4% of \$5000 is?
Given a and b: multiply:
$.094 \times \$5000 = \470
<i>example:</i> 56 problems correct out of 80 is what
percent?
Compare <i>a</i> % of <i>b</i> is <i>c</i> :% of 80 is 56?
Given c and other (b) :
$56 \div 80 = .7 = 70\%$
<i>example:</i> 5610 people, which is 60% of the
registered voters, vote in an election. How
many are registered?
Compare <i>a</i> % of <i>b</i> is <i>c</i> : 60% of is 5610?
Given <i>c</i> and other (<i>a</i>): $5610 \div .6 = 9350$

8

- 53. 4% of 9 is what?
- 54. What percent of 70 is 56?
- 55. 15% of what is 60?
- 56. What is 43% of 500?
- 57. 10 is what percent of 40?

E. Estimation and approximation:

Rounding to one significant digit: example: 3.67 rounds to 4 example: .0449 rounds to .04 example: .850 rounds to either 800 or 900 example: $\overline{.4} = .44444...$ rounds to .4

Problems 58-61: Round to one significant digit:

58. 45.01	6000083
59. 1.09	61. 0.5

To <u>estimate</u> an answer, it is often sufficient to round each given number to one significant digit, then compute:

example: .0298 × .000513 Round and compute: .03 × .0005 = .000015 .000015 is the estimate

Problems 62-66: Select the best approximation of the answer:

62. $1.2346825 \times 367.003246 = (4, 40, 400, 4000, 40000)$

Answers:

1.	.7	
2.	.03	
3.	.2	
4.	1.9	
5.	.5	
6.	.0085, .02, .19, .2	
7.	.449, .45, .451, .5	
8.	4.49, 4.5, 5.4, 5.41	
9.	.34, .3,.3	
10.	.67, .67, .67, .6	
11.	.625	
12.	.428571	
13.	4.3	
14.	.03	
15.	$\frac{1}{100}$	
16.	$\frac{19}{50}$	
17.	$4\frac{9}{10} = \frac{49}{50}$	
18.	$1\frac{1}{4} = \frac{5}{4}$	
19.	$.6, \frac{2}{3}, .67, .\overline{67}$	
20.	$\frac{13}{16}$, .87, $\frac{7}{8}$, .88	

- 63. $.0042210398 \div .01904982 = (.02, .2, .5, 5, 20, 50)$
- 64. 101.7283507 + 3.14159265 = (2, 4, 98, 105, 400)
- 65. $(4.36285903)^3 = (12, 64, 640, 5000, 12000)$
- 66. 1.147 114.7 = (-100, -10, 0, 10, 100)

Word Problems:

9

21. all equal $\frac{1}{100}$

22. 6.18 23...73 24. 3.791 25. \$1.86 26. \$6.50 27.7.5 28. 4.321 29. 7.38 30. 52.17 31. 32.4 32. .002 33. .0016 34. 2 35. .2601 36. .00013 37. .265 38. 100 39. 120 40.3 41...6 42. 3.68

Problems 67-69: A cassette which cost \$9.50 last year costs \$11 now.

- 67. What is the amount of the increase?
- 68. What percent of the original price is the increase?
- 69. What is the percent increase?

Problems 70-71: Jodi's weekly pay is \$89.20. She gets a 5% raise.

- 70. What will be her new weekly pay?
- 71. How much more will she get?

Problems 72-74: Sixty percent of those registered voted in the last election.

- 72. What fraction voted?
- 73. If there was 45,000 registered, how many voted?
- 74. If 33,000 voted, how many were registered?
- 75. A person weighs 125 pounds. Their ideal weight is 130 pounds. Their actual weight is what percent of their ideal weight?

43	. 30%
44	. 400%
45.	. 8.5%
46	1
47	. 1.36
48	0003
49	04
50	. 3% of 40 is 1.2;
	a = 3%, b = 40, c = 1.2
51	. 150% of 400 is 600;
	a = 150%, b = 400, c = 600
52	. 25% of 12 is 3;
	a = 25%, b = 12, c = 3
53	36
54	. 80%
55.	. 400
56	. 215
57	. 25%
58	. 50
59.	. 1
60.	0008
61	6

62. 400	67. \$1.50	72. $\frac{3}{5}$
632	68. ≈15.8%	73. 27.000
64. 105	69. ≈15.8%	74, 55,000
65. 64	70. \$93.66	$75 \sim 96\%$
66. –100	71. \$4.46	75. ~ 5070
	· · · · · · · · · · · · · · · · · · ·	-

TOPIC 4: EXPONENTS

A. <u>Positive integer exponents</u>:

Meaning of exponents: example: $3^4 = 3 \times 3 \times 3 \times 3$ $= 3 \cdot 3 \cdot 3 \cdot 3 = 81$ example: $4^3 = 4 \cdot 4 \cdot 4 = 64$

Problems 1-12: Find the value:

1. $3^2 =$	7. $(-2)^3 =$
2. $2^3 =$	8. $100^2 =$
3. $(-3)^2 =$	9. $(2.1)^2 =$
4. $-(3)^2 =$	10. $(1)^3 =$
5. $-3^2 = -(3^2) =$	11. $\left(\frac{2}{3}\right)^3 =$
6. $-2^3 =$	12. $\left(-\frac{2}{3}\right)^3 =$

 a^{b} means use *a* as a factor *b* times. (*b* is the exponent or power of *a*) *example:* 2^{5} means $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ 2^{5} has a value 32 5 is the exponent or power 2 is the factor *example:* $5 \cdot 5$ can be written 5^{2} . Its value is 25. *example:* $4^{1} = 4$

Problems 13-24: Write the meaning and find the value:

 13. $6^3 =$ 19. $(0.1)^4 =$

 14. $(-4)^2 =$ 20. $\left(\frac{2}{3}\right)^4 =$

 15. $0^4 =$ 21. $\left(1\frac{1}{2}\right)^2 =$

 16. $7^1 =$ 22. $2^{10} =$

 17. $1^4 =$ 23. $(.03)^2 =$

 18. $(-1)^3 =$ 24. $3^2 \cdot 2^3 =$

example: $\frac{8}{2^4} = \frac{8}{16} = \frac{1}{2}$ example: $\frac{6^3}{6^2} = \frac{216}{36} = 6$

Problems 25-30: Simplify:

25.	$\frac{6}{3^2}$ =	28.	$\frac{10}{4^2 \cdot 5} =$
26.	$\frac{2^5}{8} =$	29.	$\frac{2^3 \cdot 2^4}{2^5 \cdot 2} =$
27.	$\frac{4 \cdot 5}{10} =$	30.	$\frac{5 \cdot 12}{6^2 \cdot 10} =$

Problems 31-38: Find the value:

31. $3^2 + 4^2 =$	$ 35. (3.1)^2 - (.03)^2 =$
32. $5^2 =$	36. $(3.1)^2 + (.03)^2 =$
33. $3^2 + 4^2 + 12^2 =$	37. $3^3 + 4^3 + 5^3 =$
34. $13^2 =$	38. $6^3 =$

B. Integer exponent laws:

Problems 39-40: Write the meaning (not the value):

39.
$$3^2 =$$
 40. $3^4 =$

- 41. Write as a power of 3: $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 =$
- 42. Write the meaning: $3^2 \cdot 3^4 =$
- 43. Write your answer to 42 as a power of 3, then find the value.
- 44. Now find each value and solve: $3^2 \cdot 3^4 =$
- 45. So $3^2 \cdot 3^4 = 3^6$. Circle each of the powers. Note how the circled numbers are related.
- 46. How are they related?

Problems 47-52: Write each expression as a power of the same factor:

<i>example:</i> $3^2 \cdot 3^4 = 3^6$	
47. $4^1 \bullet 4^2 =$	50. $(-1)^5 \cdot (-1)^4 =$
48. $5^3 \cdot 5^3 =$	51. $10 \cdot 10^4 =$
49. $3^3 \cdot 3 =$	52. 10 • 10 =
53. Make a formula by $a^{b} \bullet a^{c} = a^{[]}$. This	filling in the brackets: s is an exponent rule.
Problems 54-56: Find th	he value:
54. $3^6 = 55. 3^4$	= 56. 729 ÷ 81 =
<i>note:</i> $3^6 \div 3^4 = \frac{3^6}{3^4} = \frac{3^6}{3^4}$	• <u>3•3•3•3•3</u> 3•3•3•3
$= \frac{3}{3} \cdot \frac{3}{3} \cdot \frac{3}{3} \cdot \frac{3}{3} \cdot \frac{3}{3} \cdot 3 \cdot 3 =$	$= 1 \bullet 1 \bullet 1 \bullet 1 \bullet 3 \bullet 3 = 3^2$

57. Circle the exponents: $\frac{3^6}{3^4} = 3^2$

58. How are the circled numbers related?

Problems 59-63: Write each expression as a power:

example:
$$\frac{3^6}{3^4} = 3^2$$

59. $2^4 \div 2^4 =$ 60. $\frac{2^5}{2} =$

10

61.
$$\frac{5^2}{5} =$$

62. $\frac{(-4)^7}{(-4)^2} =$ 63. $\frac{1^5}{1^3} =$

64. Make a formula by filling in the brackets: $\frac{a^{b}}{a^{c}} = a^{[}$]. This is another exponent rule.

Problems 65-67: Find each value:

65. $4^3 =$ 66. $4^6 =$ 67. $(4^3)^2 = (64)^2 =$

Problems 68-69: Write the meaning of each expression:

example: $(4^3)^2 = 4^3 \cdot 4^3 = 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^6$ = $4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^6$ 68. $(3^2)^4 = 4^6 \cdot (5^1)^3 = 4$

70. Circle the three exponents:
$$(4^3)^2 = 4$$

- 71. What is the relation of the circled numbers?
- 72. Make a rule: $(a^b)^c = a^{[}$
- 73. Write your three exponent rules below:
 - I. $a^b \bullet a^c =$ II. $\frac{a^b}{a^c} =$ III. $(a^b)^c =$

Problems 74-80: Use the rules to write each expression as a power of the factor, and tell which rule you're using:

74.
$$3^4 \cdot 3^6 =$$

75. $\frac{2^{10}}{2^5} =$
76. $(2^5)^2 =$
77. $(3^4)^4 =$
78. $\frac{3^4}{3} =$
79. $(5^1)^2 =$
80. $10^4 \cdot 10^3 =$

C. Scientific notation:

Note that scientific form always looks like $a \times 10^n$, where $1 \le a < 10$, and *n* is an integer power of 10.

example: $32800 = 3.2800 \times 10^4$ if the zeros in the ten's and one's places are significant. If the one's zero is not significant, write: 3.280×10^4 ; if neither is significant: 3.28×10^4 . example: $.0040301 = 4.031 \times 10^{-3}$ example: $2 \times 10^2 = 200$ example: $9.9 \times 10^{-1} = .99$ Problems 81-84: Write in scientific notation:

11

Problems 85-87: Write in standard notation:

85.
$$1.4030 \times 10^3 =$$
 87. $4 \times 10^{-6} =$
86. $9.11 \times 10^{-2} =$

To compute with numbers written in scientific form, separate the parts, compute, then recombine:

example:
$$(3.14 \times 10^{5})(2)$$

= $(3.14)(2) \times 10^{5} = 6.28 \times 10^{5}$
example: $\frac{4.28 \times 10^{6}}{2.14 \times 10^{2}} = \frac{4.28}{2.14} \cdot \frac{10^{6}}{10^{2}} = 2.00 \times 10^{4}$

Problems 88-95: Write answer in scientific notation:

88.
$$10^{40} \times 10^2 =$$

91. $\frac{3.6 \times 10^5}{1.8 \times 10^3} =$
92. $\frac{1.8 \times 10^8}{3.6 \times 10^5} =$
90. $\frac{1.86 \times 10^4}{3 \times 10} =$
93. $(4 \times 10^3)^2 =$
94. $(1.5 \times 10^2) \times (5 \times 10^3) =$
95. $(1.25 \times 10^2)(4 \times 10^{-2}) =$

D. Square roots or perfect squares:

 $\sqrt{a} = b$ means $b^2 = a$, where $b \ge 0$. Thus $\sqrt{49} = 7$, because $7^2 = 49$. Also, $-\sqrt{49} = -7$. Note: $\sqrt{49}$ does *not* equal -7, (even though $(-7)^2$ does = 49) because -7 is not ≥ 0 .

example: If $\sqrt{a} = 10$, then a = 100, because $10^2 = a = 100$

Problems 96-99: Find the value and tell why:

96. If $\sqrt{a} = 5$ then a =97. If $\sqrt{x} = 4$, then x =98. If $\sqrt{36} = b$, then b =99. If $\sqrt{169} = y$, then y =

Problems 100-110: Find the value:

100.
$$\sqrt{81} =$$

101. $8^2 =$
102. $\sqrt{8^2} =$
103. $\sqrt{(-7)^2} =$
104. $\sqrt{6^2 + 8^2} =$
105. $\sqrt{3^2 + 4^2 + 12^2} =$
106. $\sqrt{3^2 + 4^2 + 12^2} =$
107. $\sqrt{17^2 - 15^2} =$
108. $\sqrt{13^2 - 12^2} =$
109. $\sqrt{4^3} =$
110. $\sqrt{3^4} =$

An	sw	er	S	;

1. 9	39. 3•3	74 3 ¹⁰ rule I
2. 8	40. 3•3•3•3	75. 2^5 rule II
3. 9	41. 3^6	75.2, full II
4. –9	42. 3•3•3•3•3•3	76. 2, rule III
5. –9	43 $3^6 = 729$	77. 3^{12} , rule III
68	$44, 9 \bullet 81 = 729$	78. 3° , rule II
7. –8	$45 3^{(2)} \bullet 3^{(4)} = 3^{(6)}$	79. 5^2 , rule III
8. 10,000	$46 \ 2 + 4 = 6$	80. 10 ⁷ , rule I
9. 4.41	$47 4^3$	81. 9.3×10^7
10001	$48 5^6$	82. 4.2×10^{-5}
11. $\frac{8}{27}$	$49 3^4$	83. 5.07
12. $-\frac{8}{37}$	$(-1)^9$	84. -3.2×10
13 6 6 6 6 - 216	50.(-1)	85. 1403.0
13.0000 = 210 14.(-4)(-4) = 16	51. 10^{2}	86. 0.0911
14. (-4)(-4) = 10	52. 10^{-1}	87000004
15.000000000000000000000000000000000000	53. $a^{b} \bullet a^{c} = a^{b + c}$	88. 10 ⁴²
10. 7 = 7 17 1 • 1 • 1 • 1 - 1	54. 729	89. 10 ³⁰
17.1010101 = 1 18 $(-1)(-1)(-1) = -1$	55. 81	90. 6.2×10^2
10. (1)(1)(1) = 1 10. (1)(1)(1)(1)	30.9	91. 2.0×10^2
19. (.1)(.1)(.1)(.1)	57. $\frac{3^{(7)}}{3^{(4)}} = 3^{(2)}$	92. 5.0×10^2
= .0001	58. $6 - 4 = 2$	93. 1.6×10^7
$20. \frac{2}{3} \bullet \frac{2}{3} \bullet \frac{2}{3} \bullet \frac{2}{3} \bullet \frac{2}{3} = \frac{10}{81}$	$59 2^{0}$	94. 7.5×10^5
$21. \frac{3}{2} \bullet \frac{3}{2} = \frac{9}{4} = 2\frac{1}{4}$	$60. 2^4$	95. 5
22. 2•2•2•2•2	61.5^{1}	96 25 $5^2 = 25$
$\bullet 2 \bullet 2 \bullet 2 \bullet 2 \bullet 2 \bullet 2$	62. $(-4)^5$	97. 16: $4^2 - 16$
= 1024	$63 1^2$ (or any power of	97.10, 4 - 10 $98.6, 6^2 - 36$
23. (.03)(.03) = .0009		98. 0, 0 = 50 00. 12. 12^2 160
24. $3 \cdot 3 \cdot 2 \cdot 2 \cdot 2 = 72$	$\begin{bmatrix} a^{b} & a^{b} \end{bmatrix} \begin{bmatrix} b-c \end{bmatrix}$	99. 13; 15 $=$ 109
25. $\frac{2}{3}$	$64. \frac{a}{a^c} = a^c$	100.9
26. 4	65. 64	101.04
27. 2	66. 4096	103.7
28. $\frac{1}{8}$	67. 4096	104.10
29. 2	$68. \ 3^2 \bullet 3^2 \bullet 3^2 \bullet 3^2$	105.5
30. $\frac{1}{6}$	$69. 5 \bullet 5 \bullet 5$	106.13
31 25	70. $(4^{(3)})^{(2)} = 4^{(6)}$	107.8
32. 25	$71 3 \times 2 = 6$	108.5
33. 169	71. $5 \times 2 = 0$ 72. $\left(a^{b}\right)^{c} a^{[bc]}$	109.8
34. 169	$12. (a) = a^{-1}$	110.9
35. 9.6091	73. I. $a^{\nu} \bullet a^{c} = a^{\nu+c}$	
36. 9.6109	II. $\frac{a^{\nu}}{a^c} = a^{b-c}$	
37. 216	$\operatorname{III} \left(a^{b}\right)^{c} = a^{bc}$	
38. 216	(u) = u	

TOPIC 5: EQUATIONS and EXPRESSIONS

A. <u>Operations with literal symbols (letters)</u>:

When letters are used to represent numbers, *addition* is shown with a "plus sign" (+), and *subtraction* with a "minus sign" (–).

Multiplication is often show by writing letters together: example: ab means a times b So do $a \cdot b$, $a \times b$, and (a)(b)example: $7 \cdot 8 = 7 \times 8 = (7)(8)$